Evolution and Hemoglobin: Get what you get, and don’t get upset.

Evolution is one of life’s most powerful tools. Fueled by natural selection, it allows life to improve over generations. It makes people wonder why certain hereditary diseases are so common. However, sometime we have to take a closer look.

One classic example is Sickle Cell Anemia, or sickle cell disease (SCD), which is a hereditary disease that causes blood cells to have an irregular, sickle-like shape instead of their normal round shape. This causes complications in carrying oxygen and a risk of blood cells getting stuck and clogging blood vessels. It is common in certain parts of Africa and Asia. It would seem odd that a deadly hereditary disease would be common, but there is a secret this diseases possesses.

SCD is recessive (having 2 recessive alleles). However, if a person is heterozygous for this disease (one recessive and one dominant allele), they are actually resistant to malaria. The parasite that causes malaria has a hard time getting into sickle-shaped cells. Heterozygous individuals have some of their cells sickle shaped, but not enough to exhibit symptoms. Therefore, it is advantageous for a person to be heterozygous for SCD. Apparently, the resistance to malaria is worth the risk of having SCD.

SCD isn’t the only disease that is resistant to malaria. Hemoglobin E disease, common in Southeast Asia, is similar to sickle cell anemia, except that its symptoms are much milder. For some people, it’s a benign disease, but its effect on malaria is still the same.

However, despite being a much better alternative, it isn’t very common in Africa. This is mostly due to the fact that, even if it’s imperfect, sickle cell anemia is already there (The Power of Random). Despite being a better alternative because of its milder symptoms, the niche of malaria-prevention has already been filled and prospered for many generations. It will take a lot of time for Hemoglobin E disease to be more common in Africa, if it ever becomes more common.

Advertisements

2 thoughts on “Evolution and Hemoglobin: Get what you get, and don’t get upset.”

  1. Very insightful blog. It is very intriguing how a potentially deadly disease can have such a good side effect. You never like seeing someone get sick, but in places like Africa where malaria is widespread, maybe it is not such a bad thing to have Sickle Cell Anemia. Very half glass full like.

    Like

    1. Well, you still certainly wouldn’t want to have Sickle Cell Anemia, but that’s the consequence of having a heterozygous allele set be advantageous. Yes, I guess it would be a half-glass full situation (although if my ancestors had a similar disease, I would probably look at it as half-glass empty considering how I’m not where my ancestors were a thousand years ago).

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s